RAG: From Theory to LlamaIndex Practice (Detailed Version)

RAG: From Theory to LlamaIndex Practice (Detailed Version)

Abstract Large language models (LLMs) have demonstrated impressive capabilities. However, this does not mean they are error-free; anyone who has experienced ChatGPT’s “hallucinations” can attest to that. Retrieval Augmented Generation (RAG) is a framework designed to make LLMs more reliable by extracting relevant, up-to-date data directly related to user queries. In this article, I analyze … Read more