Combining CNNs and RNNs: Genius or Madness?

Combining CNNs and RNNs: Genius or Madness?

Author | Bill Vorhies Translator | Gai Lei Editor | Vincent AI Frontline Overview: From some interesting use cases, it seems we can completely combine CNN and RNN/LSTM. Many researchers are currently working on this research. However, the latest research trends in CNN may render this idea outdated. For more quality content, please follow the … Read more

New RNN: Independent Neurons for Improved Long-Term Memory

New RNN: Independent Neurons for Improved Long-Term Memory

In an era flooded with fragmented reading, fewer people pay attention to the exploration and thinking behind each paper. In this column, you will quickly get the highlights and pain points of selected papers, keeping up with the forefront of AI achievements. Click the “Read Original” at the bottom of this article to join the … Read more

Understanding the Differences Between CNN, DNN, and RNN

Understanding the Differences Between CNN, DNN, and RNN

Broadly speaking, NN (or the more elegant DNN) can indeed be considered to encompass specific variants like CNN and RNN. In practical applications, the so-called deep neural network DNN often integrates various known structures, including convolutional layers or LSTM units. However, based on the question posed, the DNN here should specifically refer to a fully … Read more

Latest RNN Techniques: Attention-Augmented RNN and Four Models

Latest RNN Techniques: Attention-Augmented RNN and Four Models

1 New Intelligence Compilation Source: distill.pub/2016/augmented-rnns Authors: Chris Olah & Shan Carter, Google Brain Translator: Wen Fei Today is September 10, 2016 Countdown to AI WORLD 2016 World Artificial Intelligence Conference: 38 days Countdown for Early Bird Tickets: 9 days [New Intelligence Guide] The Google Brain team, led by Chris Olah & Shan Carter, has … Read more

Overview of Dropout Application in RNNs

Overview of Dropout Application in RNNs

[Introduction] This article provides the background and overview of Dropout, as well as a parameter analysis of its application in language modeling using LSTM/GRU recurrent neural networks. Author|Adrian G Compiled by|Zhuanzhi Organized by|Yingying Dropout Inspired by the role of gender in evolution, Hinton et al. first proposed Dropout, which temporarily removes units from the neural … Read more

Solving the Vanishing Gradient Problem in RNNs

Solving the Vanishing Gradient Problem in RNNs

Click the above “MLNLP” to select the “star” public account Essential content delivered promptly Author: Yulin Ling CS224N(1.29)Vanishing Gradients, Fancy RNNs Vanishing Gradient The figure below is a more vivid example. Suppose we need to predict the next word after the sentence “The writer of the books”. Due to the vanishing gradient, the influence of … Read more

Attention Models: The Future Beyond RNN and LSTM

Attention Models: The Future Beyond RNN and LSTM

Big Data Digest Works Compiled by: Wan Jun, Da Jie Qiong, Qian Tian Pei Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks, which have been incredibly popular, it’s time to abandon them! LSTM and RNN were invented in the 1980s and 1990s, resurrected in 2014. In the following years, they became the go-to … Read more

Introduction to RNN and ODE: Understanding RNNs

Introduction to RNN and ODE: Understanding RNNs

Author: Su Jianlin Affiliation: Guangzhou Flame Information Technology Co., Ltd. Research Direction: NLP, Neural Networks Personal Homepage: kexue.fm I had originally decided to stop working with RNNs as they actually correspond to numerical methods for ODEs (Ordinary Differential Equations). This realization provided me with insights into something I have always wanted to do—using deep learning … Read more

A Beginner’s Guide to Using RNNs

A Beginner's Guide to Using RNNs

Excerpt from Medium Author: Camron Godbout Translated by: Machine Heart Contributors: Duxiade What are Recurrent Neural Networks (RNNs) and how do we use them? This article discusses the basics of RNNs, which are increasingly popular deep learning models. The intention of this article is not to delve into the obscure mathematical principles but to provide … Read more

Enhancing RNN with Adaptive Computation Time for Multi-Factor Stock Selection

Enhancing RNN with Adaptive Computation Time for Multi-Factor Stock Selection

Editorial Department WeChat Official Account KeywordsSearch across the webLatest Ranking 『Quantitative Investment』: Ranked First 『Quantitative』: Ranked First 『Machine Learning』: Ranked Third We will continue to work hard To become a qualityfinancial and technical public account across the web Today we will read an article from Guosen Securities Research Introduction to RNN The biggest feature that … Read more