# Streamlit: A Rapid Development Tool for Visualization in Python!
Hello everyone! Today I want to introduce a super user-friendly Python web application framework: Streamlit. It’s like a magical wand that allows us to quickly create beautiful data applications with simple Python code. While other frameworks require you to master various skills in front-end and back-end, Streamlit is a tool that lets you achieve full-stack development using only Python. Today, I will take you on a journey to explore this interesting tool!
## Getting Started
### 1. First Streamlit Application
```python
# Import necessary libraries
import streamlit as st
import pandas as pd
import numpy as np
# Add title and text
st.title('My First Streamlit Application')
st.write('Hello, Streamlit! 👋')
# Display data
df = pd.DataFrame({
'Name': ['Zhang San', 'Li Si', 'Wang Wu'],
'Age': [25, 30, 28]})
st.dataframe(df) # Display interactive data table
2. Interactive Widgets
# Add various input controls
name = st.text_input('Please enter your name')
age = st.slider('Select your age', 0, 100, 25)
favorite = st.multiselect(
'Choose your favorite programming languages',
['Python', 'Java', 'JavaScript', 'C++'])
# Display user input
if name:
st.write(f'Hello, {name}!')
st.write(f'Your selected age is: {age} years old')
st.write('Your favorite programming languages:', favorite)
Tip: Streamlit automatically detects code changes and reruns the application, making it perfect for rapid development and debugging!
Data Visualization
1. Chart Drawing
# Create sample data
import plotly.express as px
chart_data = pd.DataFrame(
np.random.randn(20, 3),
columns=['A', 'B', 'C'])
# Use different chart types
st.line_chart(chart_data) # Line chart
st.area_chart(chart_data) # Area chart
st.bar_chart(chart_data) # Bar chart
# Use Plotly to draw interactive charts
fig = px.scatter(chart_data, x='A', y='B',
color='C', size='C')
st.plotly_chart(fig)
2. Layout Design
# Use column layout
col1, col2 = st.columns(2)
with col1:
st.header('Left Side Content')
st.write('This is the left column')
with col2:
st.header('Right Side Content')
st.write('This is the right column')
# Use tabs
tab1, tab2 = st.tabs(['Chart 1', 'Chart 2'])
with tab1:
st.line_chart(chart_data)
with tab2:
st.bar_chart(chart_data)
Advanced Features
1. File Upload and Download
# File upload
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
data = pd.read_csv(uploaded_file)
st.write(data)
# File download
if st.button('Download Sample Data'):
csv = chart_data.to_csv(index=False)
st.download_button(
label="Download CSV file",
data=csv,
file_name='data.csv',
mime='text/csv'
)
2. Caching and Performance Optimization
# Cache data computation results
@st.cache_data
def load_large_dataset():
# Simulate loading a large dataset
data = pd.DataFrame(
np.random.randn(1000, 5),
columns=['A', 'B', 'C', 'D', 'E']
)
return data
# Use cached data
data = load_large_dataset()
st.write('Preview of the large dataset:', data.head())
Notes:
The cache decorator can greatly improve application performance Use st.session_state to manage session state Use st.empty() for dynamic updates wisely Be aware of file upload size limits
Exercises
-
Create a data visualization dashboard with various charts -
Implement file upload and data analysis functionality -
Try different layout methods to organize your application
Learning Points Summary
-
Basic Components: Master the use of common controls -
Data Display: Familiarize with various chart drawing methods -
Layout Design: Learn to use column layouts and tabs -
File Handling: Master file upload and download features -
Performance Optimization: Understand the use of caching mechanisms
Friends, today’s Python learning journey ends here! Streamlit is truly a tool that makes data application development simple and fun. Remember to practice, and feel free to ask me questions in the comments section. I wish everyone a happy learning experience, and may your Python skills soar!