Basics of Machine Learning: Machine Learning and Materials/Chemistry

How to Obtain

1. Follow the public account below, and click 【Like】 and 【View】 in this article

2. Click Get Course in the public account to obtain this material

Basics of Machine Learning: Machine Learning and Materials/Chemistry

There is a course on Basics of Machine Learning: Machine Learning and Materials/Chemistry

Basics of Machine Learning: Machine Learning and Materials/Chemistry

1. Introduction to Machine Learning

│ │ ├─ 001.0. Software Installation.mp4

│ │ ├─ 002.1. Introduction to Machine Learning.mp4

10. XGBoost (4 sections)

│ │ ├─ 001.10.1. Coulomb Matrix.mp4

│ │ ├─ 002.10.2. XGBoost.mp4

│ │ ├─ 003.10.3. Predicting Perovskite Formation Energy.mp4

│ │ ├─ 004.10.4. Principal Component Analysis.mp4

11. Clustering (1 section)

│ │ ├─ 001.11. Clustering Algorithm.mp4

12. Frontiers of Machine Learning (1 section)

│ │ ├─ 001.12. Frontiers of Machine Learning.mp4

2. Simple Models

│ │ ├─ 001.2.1. Linear Regression Algorithm.mp4

│ │ ├─ 002.2.2. Bimetallic Adsorption Energy.mp4

│ │ ├─ 003.2.3. Multiple Linear Regression.mp4

│ │ ├─ 004.2.4. Predicting Melting Points.mp4

│ │ ├─ 005.2.5. Prediction-Actual Value Plot.mp4

│ │ ├─ 006.2.6. Quadratic Regression Model.mp4

3. Model Evaluation

│ │ ├─ 001.3.1. Underfitting and Overfitting.mp4

│ │ ├─ 002.3.2. Holdout Method.mp4

│ │ ├─ 003.3.3. Cross-Validation Method.mp4

│ │ ├─ 004.3.4. Bootstrap Method.mp4

│ │ ├─ 005.3.5. Irrelevant Data.mp4

4. Classification Algorithms

│ │ ├─ 001.4.1. Decision Tree Classification.mp4

│ │ ├─ 002.4.2. Organic Small Molecule Classification.mp4

│ │ ├─ 003.4.3. Probability.mp4

│ │ ├─ 004.4.4. Bayesian Classification.mp4

│ │ ├─ 005.4.5. Accuracy.mp4

│ │ ├─ 006.4.6. k-Nearest Neighbors Classification.mp4

│ │ ├─ 007.4.7. MOF Classification (k-Nearest Neighbors).mp4

│ │ ├─ 008.4.8. Support Vector Machine Classification.mp4

│ │ ├─ 009.4.9. MOF Classification (Support Vector Machine).mp4

│ │ ├─ 010.4.10. P-R Curve.mp4

│ │ ├─ 011.4.11. ROC Curve.mp4

5. Regression Algorithms

│ │ ├─ 001.5.1. Literature Data Import.mp4

│ │ ├─ 002.5.2. Partial Least Squares Principle.mp4

│ │ ├─ 003.5.3. Predicting d-band Center (Partial Least Squares).mp4

│ │ ├─ 004.5.4. Gaussian Process Regression.mp4

│ │ ├─ 005.5.5. Data Correlation.mp4

6. Advanced Regression Algorithms

│ │ ├─ 001.6.1. Support Vector Machine Regression.mp4

│ │ ├─ 002.6.2. Neural Networks.mp4

7. Machine Learning and High-throughput Screening

│ │ ├─ 001.7.1. Matminer Library.mp4

│ │ ├─ 002.7.2. High-throughput Screening.mp4

│ │ ├─ 003.7.2.1 Solutions for Slow Characterization.mp4

│ │ ├─ 004.7.3 Using MP Database.mp4

8. Database Machine Learning

│ │ ├─ 001.8.1. Predicting Bulk Modulus.mp4

│ │ ├─ 002.8.2. Decision Regression Trees.mp4

│ │ ├─ 003.8.3. Cross-Validation Prediction.mp4

│ │ ├─ 004.8.4. Viewing Error Distribution.mp4

9. Ensemble Learning

│ │ ├─ 001.9.1. Feature Importance.mp4

│ │ ├─ 002.9.2. Random Forest.mp4

│ │ ├─ 003.9.3. Extremely Randomized Trees.mp4

│ │ ├─ 004.9.4. AdaBoost.mp4

│ │ ├─ 005.9.5. Gradient Boosting.mp4

│ │ ├─ 006.9.6. Hyperparameter Tuning.mp4

Leave a Comment