13 Practical Image Augmentation Techniques in Pytorch (With Code)

Author丨Jiefa Shouzhangsheng@Zhihu

Link丨https://zhuanlan.zhihu.com/p/559887437

Using data augmentation techniques can increase the diversity of images in the dataset, thereby improving the model’s performance and generalization ability. The main image augmentation techniques include:

  • Resizing
  • Grayscale Transformation
  • Normalization
  • Random Rotation
  • Center Cropping
  • Random Cropping
  • Gaussian Blur
  • Brightness and Contrast Adjustment
  • Horizontal Flip
  • Vertical Flip
  • Gaussian Noise
  • Random Blocks
  • Central Region

Resizing

Before starting to resize the image, we need to import the data (taking fundus images as an example).

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/000001.tif'))
torch.manual_seed(0) # Set the seed for generating random numbers on CPU for reproducibility
print(np.asarray(orig_img).shape) #(800, 800, 3)

# Resizing the image
resized_imgs = [T.Resize(size=size)(orig_img) for size in [128,256]]
# plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('resize:128*128')
ax2.imshow(resized_imgs[0])

ax3 = plt.subplot(133)
ax3.set_title('resize:256*256')
ax3.imshow(resized_imgs[1])

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Grayscale Transformation

This operation converts RGB images to grayscale images.

gray_img = T.Grayscale()(orig_img)
# plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('gray')
ax2.imshow(gray_img,cmap='gray')
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Normalization

Normalization can speed up the computation speed of models based on neural network structures and accelerate the learning speed.

  • Subtract the channel mean from each input channel
  • Divide it by the channel standard deviation.
normalized_img = T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))(T.ToTensor()(orig_img))
normalized_img = [T.ToPILImage()(normalized_img)]
# plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('normalize')
ax2.imshow(normalized_img[0])

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Random Rotation

Rotate the image at a designed angle

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

rotated_imgs = [T.RandomRotation(degrees=90)(orig_img)]
print(rotated_imgs)
plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('90°')
ax2.imshow(np.array(rotated_imgs[0]))
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Center Cropping

Crop the center region of the image

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

center_crops = [T.CenterCrop(size=size)(orig_img) for size in (128,64)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('128*128°')
ax2.imshow(np.array(center_crops[0]))

ax3 = plt.subplot(133)
ax3.set_title('64*64')
ax3.imshow(np.array(center_crops[1]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Random Cropping

Randomly crop a part of the image

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

random_crops = [T.RandomCrop(size=size)(orig_img) for size in (400,300)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('400*400')
ax2.imshow(np.array(random_crops[0]))

ax3 = plt.subplot(133)
ax3.set_title('300*300')
ax3.imshow(np.array(random_crops[1]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Gaussian Blur

Use a Gaussian kernel to blur the image

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

blurred_imgs = [T.GaussianBlur(kernel_size=(3, 3), sigma=sigma)(orig_img) for sigma in (3,7)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('sigma=3')
ax2.imshow(np.array(blurred_imgs[0]))

ax3 = plt.subplot(133)
ax3.set_title('sigma=7')
ax3.imshow(np.array(blurred_imgs[1]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Brightness, Contrast, and Saturation Adjustment

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))
# random_crops = [T.RandomCrop(size=size)(orig_img) for size in (832,704, 256)]
colorjitter_img = [T.ColorJitter(brightness=(2,2), contrast=(0.5,0.5), saturation=(0.5,0.5))(orig_img)]

plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)
ax2 = plt.subplot(122)
ax2.set_title('colorjitter_img')
ax2.imshow(np.array(colorjitter_img[0]))
plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Horizontal Flip

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

HorizontalFlip_img = [T.RandomHorizontalFlip(p=1)(orig_img)]

plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('colorjitter_img')
ax2.imshow(np.array(HorizontalFlip_img[0]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Vertical Flip

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

VerticalFlip_img = [T.RandomVerticalFlip(p=1)(orig_img)]

plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('VerticalFlip')
ax2.imshow(np.array(VerticalFlip_img[0]))

# ax3 = plt.subplot(133)
# ax3.set_title('sigma=7')
# ax3.imshow(np.array(blurred_imgs[1]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Gaussian Noise

Add Gaussian noise to the image. The higher the noise factor, the greater the noise in the image.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

def add_noise(inputs, noise_factor=0.3):
    noisy = inputs + torch.randn_like(inputs) * noise_factor
    noisy = torch.clip(noisy, 0., 1.)
    return noisy

noise_imgs = [add_noise(T.ToTensor()(orig_img), noise_factor) for noise_factor in (0.3, 0.6)]
noise_imgs = [T.ToPILImage()(noise_img) for noise_img in noise_imgs]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('noise_factor=0.3')
ax2.imshow(np.array(noise_imgs[0]))

ax3 = plt.subplot(133)
ax3.set_title('noise_factor=0.6')
ax3.imshow(np.array(noise_imgs[1]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Random Blocks

Randomly apply square patches to the image. The more patches there are, the harder it is for the neural network to solve the problem.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

def add_random_boxes(img,n_k,size=64):
    h,w = size,size
    img = np.asarray(img).copy()
    img_size = img.shape[1]
    boxes = []
    for k in range(n_k):
        y,x = np.random.randint(0,img_size-w,(2,))
        img[y:y+h,x:x+w] = 0
        boxes.append((x,y,h,w))
    img = Image.fromarray(img.astype('uint8'), 'RGB')
    return img

blocks_imgs = [add_random_boxes(orig_img,n_k=10)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('10 black boxes')
ax2.imshow(np.array(blocks_imgs[0]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)

Central Region

Similar to random blocks, but patches are added to the center of the image

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

def add_central_region(img, size=32):
    h, w = size, size
    img = np.asarray(img).copy()
    img_size = img.shape[1]
    img[int(img_size / 2 - h):int(img_size / 2 + h), int(img_size / 2 - w):int(img_size / 2 + w)] = 0
    img = Image.fromarray(img.astype('uint8'), 'RGB')
    return img

central_imgs = [add_central_region(orig_img, size=128)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('')
ax2.imshow(np.array(central_imgs[0]))
#
# ax3 = plt.subplot(133)
# ax3.set_title('20 black boxes')
# ax3.imshow(np.array(blocks_imgs[1]))

plt.show()
13 Practical Image Augmentation Techniques in Pytorch (With Code)
This article is for academic sharing only. If there is any infringement, please contact to delete the article.

Leave a Comment