Understanding Convolutional Operators in Neural Networks

  • Standard Convolution

    • 1. Background of Convolution

    • 2. Convolution Kernel / Feature Map / Convolution Calculation

    • 3. Padding

    • 4. Stride

    • 5. Receptive Field

    • 6. Multiple Input Channels, Multiple Output Channels, and Batch Operations

    • 7. Advantages of Convolution

    • 8. Example Applications of Convolution

    • References

  • 1×1 Convolution

    • 1. 1×1 Convolution

    • 2. Example Applications

    • References

  • 3D Convolution

    • 1. 3D Convolution

    • 2. Example Applications

    • References

  • Transposed Convolution

    • 1. Background of Transposed Convolution

    • 2. Transposed Convolution and its Applications

    • 3. Differences Between Transposed Convolution and Standard Convolution

    • 4. Mathematical Derivation of Transposed Convolution

    • 5. Output Feature Map Size of Transposed Convolution

  • Dilated Convolution

    • 1. Background of Dilated Convolution

    • 2. Dilated Convolution and its Applications

    • 3. Differences Between Dilated Convolution and Standard Convolution

    • 4. Receptive Field of Dilated Convolution

  • Grouped Convolution

    • 1. Background of Grouped Convolution

    • 2. Differences Between Grouped Convolution and Standard Convolution

    • 3. Example Applications

  • Separable Convolution

    • 1. Background of Separable Convolution

    • 2. Spatial Separable Convolution

    • 3. Depthwise Separable Convolution

  • Deformable Convolution

    • 1. Background of Deformable Convolution

    • 2. Deformable Convolution

    • 3. DCN v2

Leave a Comment