13 Image Augmentation Methods in Pytorch

13 Image Augmentation Methods in Pytorch

MLNLP(Machine Learning Algorithms and Natural Language Processing) community is a well-known natural language processing community both domestically and internationally, covering NLP graduate students, university teachers, and corporate researchers.
The vision of the community is to promote communication and progress between the academic and industrial circles of natural language processing and machine learning, especially for beginners.
Reproduced from | Jishi Platform
Author | Jiefa Shou Changsheng
Source | https://zhuanlan.zhihu.com/p/559887437

Using data augmentation techniques can increase the diversity of images in the dataset, thereby improving the performance and generalization ability of the model. The main image augmentation techniques include:

  • Resize
  • Grayscale Transformation
  • Normalization
  • Random Rotation
  • Center Crop
  • Random Crop
  • Gaussian Blur
  • Brightness and Contrast Adjustment
  • Horizontal Flip
  • Vertical Flip
  • Gaussian Noise
  • Random Blocks
  • Center Region

1

『Resize』

Before starting to resize the image, we need to import the data (taking fundus images as an example).

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/000001.tif'))
torch.manual_seed(0) # Set the seed for random number generation in CPU for reproducibility
print(np.asarray(orig_img).shape) #(800, 800, 3)

# Resizing the image
resized_imgs = [T.Resize(size=size)(orig_img) for size in [128,256]]
# plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('resize:128*128')
ax2.imshow(resized_imgs[0])

ax3 = plt.subplot(133)
ax3.set_title('resize:256*256')
ax3.imshow(resized_imgs[1])

plt.show()
13 Image Augmentation Methods in Pytorch

2

『Grayscale Transformation』

This operation converts an RGB image to a grayscale image.

gray_img = T.Grayscale()(orig_img)
# plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('gray')
ax2.imshow(gray_img,cmap='gray')
13 Image Augmentation Methods in Pytorch

3

『Normalization』

Normalization can accelerate the computation speed of models based on neural network structures and speed up learning.

  • Subtract the channel mean from each input channel
  • Divide by the channel standard deviation.
normalized_img = T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))(T.ToTensor()(orig_img))
normalized_img = [T.ToPILImage()(normalized_img)]
# plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('normalize')
ax2.imshow(normalized_img[0])

plt.show()
13 Image Augmentation Methods in Pytorch

4

『Random Rotation』

Rotate the image from a design perspective.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

rotated_imgs = [T.RandomRotation(degrees=90)(orig_img)]
print(rotated_imgs)
plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('90°')
ax2.imshow(np.array(rotated_imgs[0]))
13 Image Augmentation Methods in Pytorch

5

『Center Crop』

Crop the center region of the image.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

center_crops = [T.CenterCrop(size=size)(orig_img) for size in (128,64)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('128*128°')
ax2.imshow(np.array(center_crops[0]))

ax3 = plt.subplot(133)
ax3.set_title('64*64')
ax3.imshow(np.array(center_crops[1]))

plt.show()
13 Image Augmentation Methods in Pytorch

6

『Random Crop』

Randomly crop a portion of the image.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

random_crops = [T.RandomCrop(size=size)(orig_img) for size in (400,300)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('400*400')
ax2.imshow(np.array(random_crops[0]))

ax3 = plt.subplot(133)
ax3.set_title('300*300')
ax3.imshow(np.array(random_crops[1]))

plt.show()
13 Image Augmentation Methods in Pytorch

7

『Gaussian Blur』

Apply Gaussian blur transformation to the image using a Gaussian kernel.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

blurred_imgs = [T.GaussianBlur(kernel_size=(3, 3), sigma=sigma)(orig_img) for sigma in (3,7)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('sigma=3')
ax2.imshow(np.array(blurred_imgs[0]))

ax3 = plt.subplot(133)
ax3.set_title('sigma=7')
ax3.imshow(np.array(blurred_imgs[1]))

plt.show()
13 Image Augmentation Methods in Pytorch

8

『Brightness, Contrast, and Saturation Adjustment』

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))
# random_crops = [T.RandomCrop(size=size)(orig_img) for size in (832,704, 256)]
colorjitter_img = [T.ColorJitter(brightness=(2,2), contrast=(0.5,0.5), saturation=(0.5,0.5))(orig_img)]

plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)
ax2 = plt.subplot(122)
ax2.set_title('colorjitter_img')
ax2.imshow(np.array(colorjitter_img[0]))
plt.show()
13 Image Augmentation Methods in Pytorch

9

『Horizontal Flip』

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

HorizontalFlip_img = [T.RandomHorizontalFlip(p=1)(orig_img)]

plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('colorjitter_img')
ax2.imshow(np.array(HorizontalFlip_img[0]))

plt.show()
13 Image Augmentation Methods in Pytorch

10

『Vertical Flip』

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

VerticalFlip_img = [T.RandomVerticalFlip(p=1)(orig_img)]

plt.figure('resize:128*128')
ax1 = plt.subplot(121)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(122)
ax2.set_title('VerticalFlip')
ax2.imshow(np.array(VerticalFlip_img[0]))

# ax3 = plt.subplot(133)
# ax3.set_title('sigma=7')
# ax3.imshow(np.array(blurred_imgs[1]))

plt.show()
13 Image Augmentation Methods in Pytorch

11

『Gaussian Noise』

Add Gaussian noise to the image. The higher the noise factor, the greater the noise in the image.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

def add_noise(inputs, noise_factor=0.3):
    noisy = inputs + torch.randn_like(inputs) * noise_factor
    noisy = torch.clip(noisy, 0., 1.)
    return noisy

noise_imgs = [add_noise(T.ToTensor()(orig_img), noise_factor) for noise_factor in (0.3, 0.6)]
noise_imgs = [T.ToPILImage()(noise_img) for noise_img in noise_imgs]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('noise_factor=0.3')
ax2.imshow(np.array(noise_imgs[0]))

ax3 = plt.subplot(133)
ax3.set_title('noise_factor=0.6')
ax3.imshow(np.array(noise_imgs[1]))

plt.show()
13 Image Augmentation Methods in Pytorch

12

『Random Blocks』

Randomly apply square patches to the image. The more patches there are, the harder it is for the neural network to solve the problem.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

def add_random_boxes(img,n_k,size=64):
    h,w = size,size
    img = np.asarray(img).copy()
    img_size = img.shape[1]
    boxes = []
    for k in range(n_k):
        y,x = np.random.randint(0,img_size-w,(2,))
        img[y:y+h,x:x+w] = 0
        boxes.append((x,y,h,w))
    img = Image.fromarray(img.astype('uint8'), 'RGB')
    return img

blocks_imgs = [add_random_boxes(orig_img,n_k=10)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('10 black boxes')
ax2.imshow(np.array(blocks_imgs[0]))

plt.show()
13 Image Augmentation Methods in Pytorch

13

『Center Region』

Similar to random blocks, but patches are added to the center of the image.

from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torch
import numpy as np
import torchvision.transforms as T

plt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open(Path('image/2.png'))

def add_central_region(img, size=32):
    h, w = size, size
    img = np.asarray(img).copy()
    img_size = img.shape[1]
    img[int(img_size / 2 - h):int(img_size / 2 + h), int(img_size / 2 - w):int(img_size / 2 + w)] = 0
    img = Image.fromarray(img.astype('uint8'), 'RGB')
    return img

central_imgs = [add_central_region(orig_img, size=128)]

plt.figure('resize:128*128')
ax1 = plt.subplot(131)
ax1.set_title('original')
ax1.imshow(orig_img)

ax2 = plt.subplot(132)
ax2.set_title('')
ax2.imshow(np.array(central_imgs[0]))
#
# ax3 = plt.subplot(133)
# ax3.set_title('20 black boxes')
# ax3.imshow(np.array(blocks_imgs[1]))

plt.show()
13 Image Augmentation Methods in Pytorch
Technical Group Invitation

13 Image Augmentation Methods in Pytorch

△ Long press to add the assistant

Scan the QR code to add the assistant WeChat

Please note: Name-School/Company-Research Direction
(e.g. Xiao Zhang-Harbin Institute of Technology-Dialogue System)
to apply to join Natural Language Processing/Pytorch and other technical groups

About Us

MLNLP Community is a grassroots academic community jointly established by domestic and foreign natural language processing scholars, which has developed into a well-known natural language processing community at home and abroad, including well-known brands such as Top Conference Group, AI Selection, MLNLP Talent Exchange and AI Academic Exchange, aimed at promoting progress between the academic and industrial circles of machine learning and natural language processing.
The community can provide an open exchange platform for the further study, employment, and research of related practitioners. Everyone is welcome to follow and join us.

13 Image Augmentation Methods in Pytorch

Leave a Comment