A Collection of Common PyTorch Code Snippets

Source | Jishi Platform

Author | Jack Stark@Zhihu

The best resources for PyTorch are the official documentation. This article is a collection of common PyTorch code snippets, with some modifications based on reference material [1](Zhang Hao: PyTorch Cookbook) for easier consultation during use.

1

Basic Configuration

Import Packages and Check Versions

import torch
import torch.nn as nn
import torchvision
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))

Reproducibility

Complete reproducibility cannot be guaranteed across different hardware (CPU, GPU), even with the same random seed. However, reproducibility should be ensured on the same device. The specific approach is to fix the random seed for torch at the start of the program and also fix the random seed for numpy.

np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

GPU Settings

If only one GPU is needed

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

If multiple GPUs are needed, for example, GPUs 0 and 1.

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

It can also be set when running the code from the command line:

CUDA_VISIBLE_DEVICES=0,1 python train.py

Clear GPU Memory

torch.cuda.empty_cache()

Alternatively, use the command line to reset the GPU:

nvidia-smi --gpu-reset -i [gpu_id]

2

Tensor Processing

Tensor Data Types

PyTorch has 9 types of CPU tensors and 9 types of GPU tensors.

A Collection of Common PyTorch Code Snippets

Basic Tensor Information

tensor = torch.randn(3,4,5)
print(tensor.type())  # Data type
print(tensor.size())  # Tensor shape, a tuple
print(tensor.dim())   # Number of dimensions

Named Tensors

Naming tensors is a very useful method that allows easy indexing or other operations using dimension names, greatly improving readability and usability, and preventing errors.

# Before PyTorch 1.3, use comments
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)

# After PyTorch 1.3
NCHW = ['N', 'C', 'H', 'W']
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)

# Can also set like this
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))

# Use align_to to conveniently sort dimensions
tensor = tensor.align_to('N', 'C', 'H', 'W')

Data Type Conversion

# Set default type, FloatTensor is much faster than DoubleTensor in pytorch
torch.set_default_tensor_type(torch.FloatTensor)

# Type conversion
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor and np.ndarray Conversion

All CPU tensors except CharTensor support conversion to numpy format and back.

ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.

Torch.tensor and PIL.Image Conversion

# Tensors in pytorch default to [N, C, H, W] order, and the data range is [0,1], need to transpose and normalize
# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way

# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

np.ndarray and PIL.Image Conversion

image = PIL.Image.fromarray(ndarray.astype(np.uint8))
ndarray = np.asarray(PIL.Image.open(path))

Extracting Values from Single-Element Tensors

value = torch.rand(1).item()

Tensor Reshaping

# When inputting a convolutional layer to a fully connected layer, tensor reshaping is usually required,
# Compared to torch.view, torch.reshape can automatically handle cases where the input tensor is non-contiguous.
tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)

Shuffling Order

tensor = tensor[torch.randperm(tensor.size(0))]  # Shuffle the first dimension

Horizontal Flip

# Pytorch does not support negative step operations like tensor[::-1], horizontal flip can be achieved through tensor indexing
# Assuming the tensor dimension is [N, D, H, W].
tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]

Copying Tensors

# Operation | New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach().clone()() # | New | No |

Tensor Concatenation

'''Note that the difference between torch.cat and torch.stack is that torch.cat concatenates along the given dimension, while torch.stack adds a dimension. For example, when the parameter is 3 tensors of size 10x5, the result of torch.cat is a tensor of size 30x5, while the result of torch.stack is a tensor of size 3x10x5.''' 
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

Converting Integer Labels to One-Hot Encoding

# Pytorch labels default start from 0
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

Getting Non-Zero Elements

torch.nonzero(tensor)               # index of non-zero elements
torch.nonzero(tensor==0)            # index of zero elements
torch.nonzero(tensor).size(0)       # number of non-zero elements
torch.nonzero(tensor == 0).size(0)  # number of zero elements

Checking if Two Tensors are Equal

torch.allclose(tensor1, tensor2)  # float tensor
torch.equal(tensor1, tensor2)     # int tensor

Expanding Tensors

# Expand tensor of shape 64*512 to shape 64*512*7*7.
tensor = torch.rand(64,512)
tensor = torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

Matrix Multiplication

# Matrix multiplication: (m*n) * (n*p) -> (m*p).
result = torch.mm(tensor1, tensor2)
# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)
# Element-wise multiplication.
result = tensor1 * tensor2

Calculating Pairwise Euclidean Distance Between Two Sets of Data

Utilizing the broadcast mechanism

dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))

3

Model Definition and Operations

An Example of a Simple Two-Layer Convolutional Network

# convolutional neural network (2 convolutional layers)
class ConvNet(nn.Module):
    def __init__(self, num_classes=10):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, num_classes)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)
        return out

model = ConvNet(num_classes).to(device)

Bilinear Pooling

X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
X = torch.nn.functional.normalize(X)                  # L2 normalization

Multi-GPU Synchronized BN (Batch Normalization)

When using torch.nn.DataParallel to run the code on multiple GPUs, the default operation of PyTorch’s BN layer is to compute the mean and standard deviation independently on each card. Synchronized BN uses data from all cards to compute the mean and standard deviation of the BN layer together, alleviating the issue of inaccurate estimation of mean and standard deviation when the batch size is small, which is an effective performance improvement technique in tasks such as object detection.

sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True,
                                  track_running_stats=True)

Convert All BN Layers of an Existing Network to Synchronized BN Layers

def convertBNtoSyncBN(module, process_group=None):
    '''Recursively replace all BN layers to SyncBN layer.
    Args:        module[torch.nn.Module]. Network    '''
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
        sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,
                                          module.affine, module.track_running_stats, process_group)
        sync_bn.running_mean = module.running_mean
        sync_bn.running_var = module.running_var
        if module.affine:
            sync_bn.weight = module.weight.clone().detach()
            sync_bn.bias = module.bias.clone().detach()
        return sync_bn
    else:
        for name, child_module in module.named_children():
            setattr(module, name, convertBNtoSyncBN(child_module, process_group=process_group))
        return module

Similar to BN Sliding Average

If you want to implement an operation similar to the BN sliding average, you need to use in-place operations in the forward function to assign values to the sliding average.

class BN(torch.nn.Module):
    def __init__(self):
        ...
        self.register_buffer('running_mean', torch.zeros(num_features))

    def forward(self, X):
        ...
        self.running_mean += momentum * (current - self.running_mean)

Calculating the Total Number of Model Parameters

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

Viewing Parameters in the Network

You can view all the trainable parameters (including those inherited from the parent class) using model.state_dict() or model.named_parameters() functions.

params = list(model.named_parameters())
(name, param) = params[28]
print(name)
print(param.grad)
print('-------------------------------------------------')
(name2, param2) = params[29]
print(name2)
print(param2.grad)
print('----------------------------------------------------')
(name1, param1) = params[30]
print(name1)
print(param1.grad)

Model Visualization (Using pytorchviz)

szagoruyko/pytorchvizgithub.com

Similar to Keras’s model.summary() Outputting Model Information, Using pytorch-summary

sksq96/pytorch-summarygithub.com

Model Weight Initialization

Note the difference between model.modules() and model.children(): model.modules() will iteratively traverse all sublayers of the model, while model.children() will only traverse one layer down the model.

# Common practice for initialization.
for layer in model.modules():
    if isinstance(layer, torch.nn.Conv2d):
        torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                      nonlinearity='relu')
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)
    elif isinstance(layer, torch.nn.BatchNorm2d):
        torch.nn.init.constant_(layer.weight, val=1.0)
        torch.nn.init.constant_(layer.bias, val=0.0)
    elif isinstance(layer, torch.nn.Linear):
        torch.nn.init.xavier_normal_(layer.weight)
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)
# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)

Extracting a Specific Layer from the Model

modules() will return an iterator of all modules in the model, allowing access to the innermost layers, such as self.layer1.conv1. There are also corresponding name_children() attributes and named_modules(), which not only return the module iterator but also the names of the network layers.

# Extract the first two layers
new_model = nn.Sequential(*list(model.children())[:2])
# If you want to extract all convolutional layers from the model, you can do the following:
for layer in model.named_modules():
    if isinstance(layer[1], nn.Conv2d):
         conv_model.add_module(layer[0], layer[1])

Using Pretrained Models for Some Layers

Note that if the saved model is torch.nn.DataParallel, the current model also needs to be.

model.load_state_dict(torch.load('model.pth'), strict=False)

Loading a Model Saved on GPU to CPU

model.load_state_dict(torch.load('model.pth', map_location='cpu'))

Importing Corresponding Parts of Another Model into a New Model

When importing parameters from another model, if the structures of the two models are inconsistent, directly importing the parameters will throw an error. The following method allows you to import the same parts of another model into the new model.

# model_new represents the new model
# model_saved represents another model, for example, a saved model imported using torch.load
model_new_dict = model_new.state_dict()
model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}
model_new_dict.update(model_common_dict)
model_new.load_state_dict(model_new_dict)

4

Data Processing

Calculating the Mean and Standard Deviation of a Dataset

import os
import cv2
import numpy as np
from torch.utils.data import Dataset
from PIL import Image

def compute_mean_and_std(dataset):    # Input PyTorch dataset, output mean and std    mean_r = 0    mean_g = 0    mean_b = 0
    for img, _ in dataset:        img = np.asarray(img) # change PIL Image to numpy array        mean_b += np.mean(img[:, :, 0])        mean_g += np.mean(img[:, :, 1])        mean_r += np.mean(img[:, :, 2])
    mean_b /= len(dataset)    mean_g /= len(dataset)    mean_r /= len(dataset)
    diff_r = 0    diff_g = 0    diff_b = 0    N = 0
    for img, _ in dataset:        img = np.asarray(img)
        diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))        diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))        diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))
        N += np.prod(img[:, :, 0].shape)
    std_b = np.sqrt(diff_b / N)    std_g = np.sqrt(diff_g / N)    std_r = np.sqrt(diff_r / N)
    mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)    std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)    return mean, std

Getting Basic Information of Video Data

import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()

TSN Samples One Frame from Each Segment

K = self._num_segments
if is_train:    if num_frames > K:        # Random index for each segment.        frame_indices = torch.randint(            high=num_frames // K, size=(K,), dtype=torch.long)        frame_indices += num_frames // K * torch.arange(K)    else:        frame_indices = torch.randint(            high=num_frames, size=(K - num_frames,), dtype=torch.long)        frame_indices = torch.sort(torch.cat((            torch.arange(num_frames), frame_indices)))[0]else:    if num_frames > K:        # Middle index for each segment.        frame_indices = num_frames / K // 2        frame_indices += num_frames // K * torch.arange(K)    else:        frame_indices = torch.sort(torch.cat((                                          torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]

Common Training and Validation Data Preprocessing

Among them, the ToTensor operation converts a PIL.Image or np.ndarray of shape H×W×D, with a value range of [0, 255], into a torch.Tensor of shape D×H×W, with a value range of [0.0, 1.0].

train_transform = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(size=224,                                             scale=(0.08, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),                                     std=(0.229, 0.224, 0.225)),
])
val_transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),                                     std=(0.229, 0.224, 0.225)),])

5

Model Training and Testing

Classification Model Training Code

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i ,(images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        # Backward and optimizer
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (i+1) % 100 == 0:
            print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'                  .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

Classification Model Testing Code

# Test the model
model.eval()  # eval mode(batch norm uses moving mean/variance               #instead of mini-batch mean/variance)
with torch.no_grad():    correct = 0    total = 0    for images, labels in test_loader:        images = images.to(device)        labels = labels.to(device)        outputs = model(images)        _, predicted = torch.max(outputs.data, 1)        total += labels.size(0)        correct += (predicted == labels).sum().item()
    print('Test accuracy of the model on the 10000 test images: {} %'          .format(100 * correct / total))

Custom Loss

Inherit the torch.nn.Module class to write your own loss.

class MyLoss(torch.nn.Module):
    def __init__(self):
        super(MyLoss, self).__init__()
    def forward(self, x, y):
        loss = torch.mean((x - y) ** 2)
        return loss

Label Smoothing

Create a label_smoothing.py file, and then reference it in the training code, replacing the cross-entropy loss with LSR. The content of label_smoothing.py is as follows:

import torch
import torch.nn as nn

class LSR(nn.Module):
    def __init__(self, e=0.1, reduction='mean'):
        super().__init__()
        self.log_softmax = nn.LogSoftmax(dim=1)
        self.e = e
        self.reduction = reduction
    def _one_hot(self, labels, classes, value=1):
        """            Convert labels to one hot vectors
        Args:            labels: torch tensor in format [label1, label2, label3, ...]            classes: int, number of classes            value: label value in one hot vector, default to 1
        Returns:            return one hot format labels in shape [batchsize, classes]        """
        one_hot = torch.zeros(labels.size(0), classes)
        #labels and value_added  size must match        labels = labels.view(labels.size(0), -1)
        value_added = torch.Tensor(labels.size(0), 1).fill_(value)
        value_added = value_added.to(labels.device)
        one_hot = one_hot.to(labels.device)
        one_hot.scatter_add_(1, labels, value_added)
        return one_hot
    def _smooth_label(self, target, length, smooth_factor):
        """convert targets to one-hot format, and smooth        them.        Args:            target: target in form with [label1, label2, label_batchsize]            length: length of one-hot format(number of classes)            smooth_factor: smooth factor for label smooth
        Returns:            smoothed labels in one hot format        """
        one_hot = self._one_hot(target, length, value=1 - smooth_factor)
        one_hot += smooth_factor / (length - 1)
        return one_hot.to(target.device)
    def forward(self, x, target):
        if x.size(0) != target.size(0):
            raise ValueError('Expected input batchsize ({}) to match target batch_size({})'                    .format(x.size(0), target.size(0)))
        if x.dim() < 2:
            raise ValueError('Expected input tensor to have least 2 dimensions(got {})'                    .format(x.size(0)))
        if x.dim() != 2:
            raise ValueError('Only 2 dimension tensor are implemented, (got {})'                    .format(x.size()))

        smoothed_target = self._smooth_label(target, x.size(1), self.e)
        x = self.log_softmax(x)
        loss = torch.sum(- x * smoothed_target, dim=1)
        if self.reduction == 'none':
            return loss
        elif self.reduction == 'sum':
            return torch.sum(loss)
        elif self.reduction == 'mean':
            return torch.mean(loss)
        else:
            raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')

Alternatively, label smoothing can be directly implemented in the training file.

for images, labels in train_loader:    images, labels = images.cuda(), labels.cuda()    N = labels.size(0)    # C is the number of classes.    smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()    smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
    score = model(images)    log_prob = torch.nn.functional.log_softmax(score, dim=1)    loss = -torch.sum(log_prob * smoothed_labels) / N    optimizer.zero_grad()    loss.backward()    optimizer.step()

Mixup Training

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:    images, labels = images.cuda(), labels.cuda()
    # Mixup images and labels.    lambda_ = beta_distribution.sample([]).item()    index = torch.randperm(images.size(0)).cuda()    mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
    label_a, label_b = labels, labels[index]
    # Mixup loss.    scores = model(mixed_images)    loss = (lambda_ * loss_function(scores, label_a)            + (1 - lambda_) * loss_function(scores, label_b))    optimizer.zero_grad()    loss.backward()    optimizer.step()

L1 Regularization

l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ...  # Standard cross-entropy loss
for param in model.parameters():    loss += torch.sum(torch.abs(param))
loss.backward()

Not Applying Weight Decay to Bias Terms

Weight decay in pytorch is equivalent to L2 regularization.

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},                              {'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

Gradient Clipping

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

Getting Current Learning Rate

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']
# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:    all_lr.append(param_group['lr'])

Another method, in a batch training code, the current lr is optimizer.param_groups[0][‘lr’]

Learning Rate Decay

# Reduce learning rate when validation accuracy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):    train(...)    val(...)    scheduler.step(val_acc)
# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):    scheduler.step()        train(...)    val(...)
# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):    scheduler.step()    train(...)    val(...)

Optimizer Chaining Updates

Starting from version 1.4, torch.optim.lr_scheduler supports chaining, meaning users can define two schedulers and alternately use them during training.

import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR, StepLR
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler1 = ExponentialLR(optimizer, gamma=0.9)
scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
for epoch in range(4):    print(epoch, scheduler2.get_last_lr()[0])    optimizer.step()    scheduler1.step()    scheduler2.step()

Model Training Visualization

PyTorch can use tensorboard to visualize the training process.

Install and run TensorBoard.

pip install tensorboard
tensorboard --logdir=runs

Use the SummaryWriter class to collect and visualize the corresponding data, it is convenient to view, and you can use different folders, such as ‘Loss/train’ and ‘Loss/test’.

from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
for n_iter in range(100):    writer.add_scalar('Loss/train', np.random.random(), n_iter)    writer.add_scalar('Loss/test', np.random.random(), n_iter)    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)

Saving and Loading Checkpoints

Note that in order to resume training, we need to save both the model and the optimizer’s state, as well as the current training epoch.

Extracting Convolution Features from ImageNet Pretrained Model

# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(    list(model.named_children())[:-1]))
with torch.no_grad():    model.eval()    conv_representation = model(image)

Extracting Multiple Convolution Features from ImageNet Pretrained Model

class FeatureExtractor(torch.nn.Module):    """Helper class to extract several convolution features from the given    pre-trained model.
    Attributes:        _model, torch.nn.Module.        _layers_to_extract, list<str> or set<str>
    Example:        >>> model = torchvision.models.resnet152(pretrained=True)        >>> model = torch.nn.Sequential(collections.OrderedDict(                list(model.named_children())[:-1]))        >>> conv_representation = FeatureExtractor(                pretrained_model=model,                layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)    """    def __init__(self, pretrained_model, layers_to_extract):        torch.nn.Module.__init__(self)        self._model = pretrained_model        self._model.eval()        self._layers_to_extract = set(layers_to_extract)
    def forward(self, x):        with torch.no_grad():            conv_representation = []            for name, layer in self._model.named_children():                x = layer(x)                if name in self._layers_to_extract:                    conv_representation.append(x)            return conv_representation

Fine-tuning Fully Connected Layers

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():    param.requires_grad = False
model.fc = nn.Linear(512, 100)  # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

Fine-tuning Fully Connected Layers with Higher Learning Rate, Convolution Layers with Lower Learning Rate

model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3},               {'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

6

Other Considerations

Do not use overly large linear layers. Because nn.Linear(m,n) uses O(mn) memory, large linear layers can easily exceed the available memory.
Do not use RNNs on very long sequences. Because RNN backpropagation uses the BPTT algorithm, the memory required is linearly related to the length of the input sequence.
Switch the network state with model.train() and model.eval() before model(x).
Wrap code blocks that do not require gradient calculation with with torch.no_grad().
The difference between model.eval() and torch.no_grad() is that model.eval() switches the network to testing mode, for example, BN and dropout use different computation methods during training and testing. torch.no_grad() disables PyTorch’s automatic differentiation mechanism to reduce storage usage and speed up computation, and the resulting output cannot be used for loss.backward().
model.zero_grad() will zero out the gradients of all parameters in the model, while optimizer.zero_grad() will only zero out the gradients of the parameters passed to it.
torch.nn.CrossEntropyLoss does not require the input to go through Softmax. torch.nn.CrossEntropyLoss is equivalent to torch.nn.functional.log_softmax + torch.nn.NLLLoss.
Use optimizer.zero_grad() to clear accumulated gradients before loss.backward().
In torch.utils.data.DataLoader, try to set pin_memory=True; for particularly small datasets like MNIST, setting pin_memory=False may actually be faster. The setting for num_workers needs to be found through experimentation.
Use del to promptly delete unnecessary intermediate variables to save GPU memory.
Using in-place operations can save GPU memory, such as
x = torch.nn.functional.relu(x, inplace=True)
Reduce data transfer between CPU and GPU. For example, if you want to know the loss and accuracy of each mini-batch during an epoch, accumulating them on the GPU and transferring them back to the CPU after the epoch ends will be faster than transferring them from GPU to CPU for each mini-batch.
Using half-precision floating point half() can provide some speed improvements, but be careful of stability issues caused by low numerical precision.
Regularly use assert tensor.size() == (N, D, H, W) as a debugging tool to ensure that tensor dimensions are as you expect.
Avoid using one-dimensional tensors except for label y, and use n*1 two-dimensional tensors instead to avoid unexpected results from one-dimensional tensor calculations.
Statistics code execution time for each part
with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:    ...
print(profile)
# Or run on the command line
python -m torch.utils.bottleneck main.py
Use TorchSnooper to debug PyTorch code; the program will automatically print the shape, data type, device, and whether gradient is needed for each tensor result at each line of execution.
# pip install torchsnooper
import torchsnooper
# For functions, use the @torchsnooper.snoop() decorator
# If not a function, use the with statement to activate TorchSnooper, wrapping the training loop in the with statement.
with torchsnooper.snoop():    # Original code
https://github.com/zasdfgbnm/TorchSnoopergithub.com
Model interpretability, use the captum library: https://captum.ai/captum.ai

References

  1. Zhang Hao: PyTorch Cookbook (Collection of Common Code Snippets), https://zhuanlan.zhihu.com/p/59205847?
  2. PyTorch Official Documentation and Examples
  3. https://pytorch.org/docs/stable/notes/faq.html
  4. https://github.com/szagoruyko/pytorchviz
  5. https://github.com/sksq96/pytorch-summary
  6. Others

Recommended Reading

(Click the title to jump to read)

“100 Days of Machine Learning” Video Explanation

Selected Articles from Public Account History

My Deep Learning Entry Route

Important!

More than 1700 pages of “Complete AI Learning Route and Resource Sharing” PDF document

A Collection of Common PyTorch Code Snippets

Scan the QR code below to add me on WeChat, and receive the “Complete AI Learning Route and Resource Sharing” PDF document (please note:Join Group + Location + School/Company. For example:Join Group + Shanghai + Fudan.

A Collection of Common PyTorch Code Snippets

Long press to scan the code and apply to join the group

Leave a Comment